Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1140, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212417

RESUMO

Patients with Parkinson's disease (PD) have gastrointestinal motility disorders, which are common non-motor symptoms. However, the reasons for these motility disorders remain unclear. Increased alpha-synuclein (α-syn) is considered an important factor in peristalsis dysfunction in colonic smooth muscles in patients with PD. In this study, the morphological changes and association between serping1 and α-syn were investigated in the colon of the 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-induced chronic PD model. Increased serping1 and α-syn were noted in the colon of the PD model, and decreased serping1 also induced a decrease in α-syn in C2C12 cells. Serping1 is a major regulator of physiological processes in the kallikrein-kinin system, controlling processes including inflammation and vasodilation. The kinin system also comprises bradykinin and bradykinin receptor 1. The factors related to the kallikrein-kinin system, bradykinin, and bradykinin receptor 1 were regulated by serping1 in C2C12 cells. The expression levels of bradykinin and bradykinin receptor 1, modulated by serping1 also increased in the colon of the PD model. These results suggest that the regulation of increased serping1 could alleviate Lewy-type α-synucleinopathy, a characteristic of PD. Furthermore, this study could have a positive effect on the early stages of PD progression because of the perception that α-syn in colonic tissues is present prior to the development of PD motor symptoms.


Assuntos
Gastroenteropatias , Doença de Parkinson , Animais , Humanos , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , alfa-Sinucleína/metabolismo , Bradicinina/farmacologia , Proteína Inibidora do Complemento C1 , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Receptores da Bradicinina
2.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003598

RESUMO

Parkinson's disease (PD) is a globally common progressive neurodegenerative disease resulting from the loss of dopaminergic neurons in the brain. Increased α-synuclein (α-syn) is associated with the degeneration of dopaminergic neurons and non-motor symptoms like gastrointestinal disorders. In this study, we investigated the association between serum/glucocorticoid-related kinase 1 (SGK1) and α-syn in the colon of a PD mouse model. SGK1 and α-syn expression patterns were opposite in the surrounding colon tissue, with decreased SGK1 expression and increased α-syn expression in the PD group. Immunofluorescence analyses revealed the colocation of SGK1 and α-syn; the PD group demonstrated weaker SGK1 expression and stronger α-syn expression than the control group. Immunoblotting analysis showed that Na+/K+ pump ATPase α1 expression levels were significantly increased in the PD group. In SW480 cells with SGK1 knockdown using SGK1 siRNA, decreasing SGK1 levels corresponded with significant increases in the expression levels of α-syn and ATPase α1. These results suggest that SGK1 significantly regulates Na+/K+ pump ATPase, influencing the relationship between electrolyte balance and fecal formation in the PD mouse model. Gastrointestinal disorders are some of the major prodromal symptoms of PD. Therefore, modulating SGK1 expression could be an important strategy for controlling PD.


Assuntos
Gastroenteropatias , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Glucocorticoides/metabolismo , Doenças Neurodegenerativas/metabolismo , Adenosina Trifosfatases/metabolismo , Gastroenteropatias/metabolismo , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças
3.
Biomedicines ; 11(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37509591

RESUMO

Our understanding of the gastrointestinal system in the pathophysiology of Parkinson's disease (PD) has grown considerably over the last two decades. Patients with PD experience notable gastrointestinal symptoms, including constipation. In this study, the effects of knocked-down serping1, associated with the contraction and relaxation of smooth muscle and inflammation responses, by applying the serping1 siRNA were investigated in 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-induced PD mice in an α-syn change aspect. In the result, serping1 expression was knocked down by the treatment of serping1 siRNA, and decreased serping1 induced the decrease α-syn in the colon. Furthermore, the changes in α-syn aggregation were also examined in the brain, and alleviated α-syn aggregation was also observed in an serping1 siRNA treatment group. The results indicated that serping1 siRNA could ease synucleinopathy related to the gastrointestinal system in PD. This study also raises the possibility that serping1 siRNA could alleviate α-syn aggregation in striatum and substantia nigra regions of the brain.

4.
Mol Neurobiol ; 60(2): 780-788, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36369636

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder and is caused by the loss of dopaminergic neurons in the substantia nigra (SN). However, the reason for the death of dopaminergic neurons remains unclear. An increase in α-synuclein (α-syn) expression is an important factor in the pathogenesis of PD. In the current study, we investigated the association between serine/arginine-rich protein-specific kinase 3 (Srpk3) and PD in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and in SH-SY5Y cells treated with 1-methyl-4-phenylpyridinium (MPP+). Srpk3 expression was significantly downregulated, while tyrosine hydroxylase (TH) expression decreased and α-syn expression increased after 4 weeks of MPTP treatment. Dopaminergic cell reduction and α-syn expression increase were demonstrated by Srpk3 expression inhibition by siRNA in SH-SY5Y cells. Moreover, a decrease in Srpk3 expression upon siRNA treatment promoted dopaminergic cell reduction and α-syn expression increase in SH-SY5Y cells treated with MPP+ . These results suggested that Srpk3 expression decrease due to Srpk3 siRNA caused both TH level decrease and α-syn expression increase. This raises new possibilities for studying how Srpk3 controls dopaminergic cells and α-syn expression, which may be related to PD pathogenesis. Our results provide an avenue for understanding the role of Srpk3 in dopaminergic cell loss and α-syn upregulation in SN. Furthermore, this study supports a therapeutic possibility for PD in that the maintenance of Srpk3 expression inhibits dopaminergic cell reduction.


Assuntos
Neuroblastoma , Doença de Parkinson , Animais , Camundongos , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Neuroblastoma/patologia , Substância Negra/patologia , 1-Metil-4-fenilpiridínio/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
5.
Neurosci Lett ; 769: 136386, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34875351

RESUMO

Parkinson's disease (PD) occurs when dopaminergic cells in the substantia nigra (SN) region are destroyed; however, the cause of the destruction of dopamine cells has not yet been determined. This study was performed to investigate whether changes in the hormones that cause benign prostatic hyperplasia (BPH) are related to pathological changes in PD. The pathological findings were examined by observing the lesion sites related to PD in a BPH rat model. BPH was induced in rats by subcutaneous injection of testosterone propionate for 4 weeks after castration. To investigate the changes in the SN regions, tyrosine hydroxylase (TH) and α-synuclein (α-syn) expression were analyzed by western blotting. TH expression, expressed in dopaminergic cells and used as a dopaminergic cell detection marker, decreased, whereas α-syn expression increased at the SN site. These results are quite similar to the pathological changes observed in patients with PD and Parkinsonism animal models. Our results showed an increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in the SN regions in the BPH group. Additionally, a decreased expression of B-cell lymphoma protein 2 and an increased expression of B-cell lymphoma protein 2-associated X, suggesting increased apoptosis, were observed in the BPH group. These results suggest that the pathological changes associated with PD may be caused by BPH or factors related to BPH. Thus, this study has presented a new avenue for an approach related to hormonal changes as a method to determine the cause of PD, for which the exact cause is not yet known.


Assuntos
Hiperplasia Prostática/metabolismo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , Animais , Apoptose , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Hiperplasia Prostática/patologia , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/genética , alfa-Sinucleína/genética
6.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884422

RESUMO

We investigated the potential association between integrin α7 (ITGA7) and alpha-synuclein (α-syn) in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Tyrosine hydroxylase (TH), ITGA7, and α-syn expression in the substantia nigra (SN) of the brain were observed to examine the pathological characteristics of PD. To determine the relationship between ITGA7 and PD, the expression of TH and α-syn was investigated after ITGA7 siRNA knockdown in SH-SY5Y cells. The ITGA7 microarray signal was decreased in the SN of the MPTP group, indicating reduced ITGA7 expression compared to that in the control. The expression patterns of ITGA7 in the control group and those of α-syn in the MPTP group were similar on immunohistochemical staining. Reduction in ITGA7 expression by ITGA7 siRNA administration induced a decrease in TH expression and an increase in α-syn expression in SH-SY5Y cells. The decreased expression of ITGA7 significantly decreased the expression of bcl2 and increased the bax/bcl2 ratio in SH-SY5Y cells. These results suggest that reduced ITGA7 expression may be related to increased α-syn expression and apoptosis of dopaminergic cells in an MPTP-induced PD mouse model. To the best of our knowledge, this is the first study to show an association between ITGA7 and PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Antígenos CD/metabolismo , Cadeias alfa de Integrinas/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Antígenos CD/genética , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Cadeias alfa de Integrinas/genética , Camundongos , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
7.
BMC Neurosci ; 22(1): 65, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736417

RESUMO

BACKGROUND: Parkinson's disease (PD) represent a loss of dopaminergic neurons in the substantia nigra (SN) of the midbrain. However, its cause remains unknown and Triadin (TRDN) function in the brain is also unknown. To examine the relationship between TRDN and PD, the expression levels of protein related to PD in TRDN knockdown status were studied in the SH-SY5Y cells. Cell viability and apoptosis were assessed to examine the apoptosis effect on dopaminergic cells by decreased TRDN, and the levels of the proteins related to apoptosis were also confirmed. RESULTS: This study confirmed decreased TRDN expression level (P < 0.005) at the SN in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD mouse model and identified the functional features of TRDN. Our results showed a relationship between TRDN expression and PD in that reduced TRDN level induced PD-like characteristics. Interestingly, there was TRDN expression in the regions where dopaminergic cells are in the SN, and the expression patterns of TRDN and tyrosine hydroxylase (TH) were similar. Decreased TRDN level also induced apoptotic characteristics and the Fluorescence-activated cell sorting analysis results showed that apoptosis increased (P < 0.05) as the TRDN small interfering RNA concentration increased. The cytotoxicity assay revealed that cell viability also decreased (P < 0.0005) in the same condition as that in the Fluorescence-activated cell sorting analysis. CONCLUSIONS: Decreased TRDN level could be related with the apoptotic death of dopaminergic cells at the SN in PD, and TRDN administration could give a positive effect on PD by reducing apoptotic cell death.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Neurônios Dopaminérgicos/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Doença de Parkinson/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Proteínas de Transporte/genética , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Doença de Parkinson/patologia , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502283

RESUMO

Parkinson's disease (PD) is characterized by a loss of dopaminergic cells in the substantia nigra, and its histopathological features include the presence of fibrillar aggregates of α-synuclein (α-syn), which are called Lewy bodies and Lewy neurites. Lewy pathology has been identified not only in the brain but also in various tissues, including muscles. This study aimed to investigate the link between serine/arginine-rich protein specific kinase 3 (srpk3) and α-syn in muscles in PD. We conducted experiments on the quadriceps femoris of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and the C2C12 cell line after treatment with 1-methyl-4-phenylpyridinium (MPP+) and srpk3 short interfering RNA (siRNA). Compared to the control group, the MPTP group showed significantly reduced expression of srpk3, but increased expression of α-syn. In MPP+-treated C2C12 cells, srpk3 expression gradually decreased and α-syn expression increased with the increasing MPP+ concentration. Moreover, experiments in C2C12 cells using srpk3 siRNA showed increased expressions of α-syn and phosphorylated α-syn. Our results showed that srpk3 expression could be altered by MPTP intoxication in muscles, and this change may be related to changes in α-syn expression. Furthermore, this study could contribute to advancement of research on the mechanism by which srpk3 plays a role in PD.


Assuntos
Músculo Esquelético/metabolismo , Doença de Parkinson/etiologia , Proteínas Serina-Treonina Quinases/metabolismo , alfa-Sinucleína/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Linhagem Celular , Modelos Animais de Doenças , Intoxicação por MPTP/etiologia , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiopatologia , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética
9.
Front Neurosci ; 15: 649688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967680

RESUMO

Parkinson's disease (PD), caused by destruction of dopaminergic neurons in the brain, leads to motor symptoms like bradykinesia, tremor, and walking impairments. While most research effort focuses on changes in neuronal pathology we examined how muscle proteins were altered in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. A Ca2+ release channel complex, consisting of ryanodine receptors (RYR), triadin (TRDN), and calsequestrin (CSQ1), is important for excitation-contraction coupling in the sarcoplasmic reticulum membrane in muscles. Thus, we investigated changes in the RYR Ca2+ release channel components in PD mice model. Based on a report that TRDN deletion impairs skeletal muscle function, we also investigated how the knock-down of TRDN affects other components of the RYR channel in the PD model. In this study, the expression levels of the components of RYR channels decreased in the quadriceps femoris muscle of MPTP-induced PD mice and in C2C12 cells treated with 1-methyl-4-phenylpyridinium. We show that decreased TRDN levels decrease RYR and CSQ1 levels. These results suggest that the levels of proteins related to Ca2+ channel function decreased in this model, which could impair muscle function. We conclude that muscle function alterations could add to the bradykinesia and tremor in this model of PD.

10.
Brain Res Bull ; 162: 67-72, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32485229

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease, which shows distinct manifestations such as significant loss of dopaminergic neurons in the substantia nigra (SN). Gene expression was analyzed in the SN of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), wherein downregulation of dopaminergic neurons occurred to examine the possible causes leading to the loss of dopaminergic neurons. In addition, a serine/cysteine protease inhibitor (Serping1) was studied as one of the genes that were prominently upregulated in mice chronically intoxicated with MPTP. Western blot analysis showed that, concomitant to the downregulation of dopaminergic cells, there was a substantial increase in Serping1 expression within the SN of the MPTP-induced PD mouse model. The SH-SY5Y cells were transfected with Serping1 short interfering RNA (siRNA) to evaluate the correlation between the expression of Serping1 and the loss of dopaminergic cells. Serping1 depletion elicited the upregulation of dopaminergic cells. Moreover, neuroprotective effect against dopaminergic cell loss was demonstrated upon the inhibition of Serping1 expression by siRNA in the MPP+ (1-methyl-4-phenylpyridinium)- treated SH-SY5Y cells. These results show that increased expression of Serping1 may play a critical role in dopaminergic cell death in the SN of chronic MPTP-induced PD mouse model and in SH-SY5Y cells.


Assuntos
Proteína Inibidora do Complemento C1/biossíntese , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/tratamento farmacológico , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...